
Learning from Demonstrations Through the Use
of Non-Rigid Registration

John Schulman and Jonathan Ho and Cameron Lee and Pieter Abbeel∗

Abstract We consider the problem of teaching robots by demonstration how to per-
form manipulation tasks, in which the geometry (including size, shape, and pose)
of the relevant objects varies from trial to trial. We present a method, which we
call trajectory transfer, for adapting a demonstrated trajectory from the geometry
at training time to the geometry at test time. Trajectory transfer is based on non-
rigid registration, which computes a smooth transformation from the training scene
onto the testing scene. We then show how to perform a multi-step task by repeat-
edly looking up the nearest demonstration and then applying trajectory transfer. As
our main experimental validation, we enable a PR2 robot to autonomously tie five
different types of knots in rope.

1 Introduction

This paper is concerned with teaching robots to perform manipulation tasks by
demonstration. In other words, a human performs the task one or more times (by
teleoperation or directly guiding the robot’s end-effector), and a learning algorithm
extracts the essence of these demonstrations so the robot can perform the task au-
tonomously under different starting conditions.

Our main running example is tying knots in rope. Knot tying is required in sev-
eral tasks of practical importance, including tying fasteners around wire bundles
(common in aerospace applications) and surgical suturing. While it is our running
example, our method is not specific to knot tying and we also experimentally illus-
trate its capabilities in folding clothing and tasks involving household objects.

The procedure for tying a given type of knot can be broken into several segments
based on grab and release events. For example, one segment might be to grab the end

∗ J. Schulman, J. Ho, C. Lee, and P. Abbeel are in the Department of Electrical Engineering and
Computer Sciences at UC Berkeley

trajectory
transfer

3D registration

Monday, July 8, 13

Fig. 1 Trajectory transfer as applied to the first stage (segment) of the overhand knot procedure.
Top left: robot’s first view of rope at training time. Top right: robot’s first view of rope at test-
ing time. Bottom left: point cloud of rope with demonstrated trajectory overlaid, along with x-y
coordinate grid. Bottom right: point cloud of rope with warped trajectory generated by our algo-
rithm, along with warped coordinate grid. Note that this trajectory is the first step of a multi-step
procedure, and the warping will be performed at least two more times for this knot.

of the rope, move it to form a loop, and then release it. For each of these segments,
the end-effector trajectory ought to depend on the geometry of the rope in some way
that must be inferred by the algorithm. This paper presents a non-parametric way to
learn from examples how the trajectory depends on the geometry of the initial state.

Our main contribution is to show how non-rigid registration can be used to
adapt a demonstrated trajectory to a new situation. The problem of generalizing
a single demonstration can be described as follows. Suppose that at training time,
STATEtrain is the initial state of the rope (represented as an unorganized point cloud)
and TRAJtrain is the trajectory applied to that state by the demonstrator. At test time,
the robot is presented with a new state STATEtest and must generate a new trajectory
TRAJtest based on the triple (STATEtrain,TRAJtrain,STATEtest).

Our procedure, which we call trajectory transfer, is summarized as follows. We
register STATEtrain to STATEtest, obtaining a nonrigid transformation f : R3 → R3,
and then we apply f to TRAJtrain to obtain the new trajectory TRAJtest. See Figure
1 for illustration. Trajectory transfer enables the robot to generalize from a single
demonstration to a much larger part of the state space. If multiple demonstrations
are available, one can look up the demonstration with the closest initial state and
then use trajectory transfer.

Our second contribution is a method for completing multi-step tasks robustly
using a large number of demonstrations of the task. The method is simple: we re-
peatedly look up the nearest neighbor, using the registration cost as the measure of
distance, and then apply trajectory transfer. This simple procedure can be used as a
complete policy that enables the robot to complete a multi-step task, eliminating the

need to program a custom state machine. This policy recovers from failures, assum-
ing that the demonstrator has provided examples of the failure states along with the
corrective motions that get out of them.

The main contributions of this work can be summarized as follows:

• This is the first work to use non-rigid registration to adapt end-effector trajecto-
ries to a new scene; we use a non-rigid registration formulation that is well-suited
to this task.

• We describe how to use optimization-based motion planning to optimally execute
the transferred gripper trajectories.

• We present experiments on knot tying and other multi-step tasks, where we re-
peatedly use the registration cost to choose the nearest demonstration.

2 Related work

Nonrigid registration has been used in other fields to transfer information from one
geometric entity to another. In medical image analysis, a patient’s image is com-
monly registered to an atlas to locate anatomical structures [1]. In 3D modeling,
it has been used to fill in missing parts of scans [2]. In computer vision, nonrigid
registration has been used for object recognition and handwriting recognition [3].
Also in vision, using nearest-neighbor based techniques (not involving registration)
to transfer various sorts of metadata from one image onto another has had some
recent success [4, 5, 6].

Learning from demonstrations, also known as programming by demonstration,
has always been a topic of interest in robotics; see [7] for a review. Calinon, Billard,
and collaborators [8, 9] have advanced one line of work that is similar in motiva-
tion to ours, in that they develop a learning method to perform manipulation tasks
under varying initial conditions. Their approach is based on learning a mixture of
Gaussians to encode the joint distribution of the robot trajectory and the environ-
ment state variables, so that by conditioning on the environment state, they can infer
the appropriate trajectory. Ye and Alterovitz have augmented this approach with a
repair stage that does motion planning around the learned trajectory to avoid obsta-
cles [10].

The approach of Calinon and Billard assumes access to a featurization of the
environment, since regression requires an input vector of fixed dimensionality. Their
approach is most applicable in situations when the learned trajectory depends on a
few landmarks in the environment that can be reliably detected. Their approach is
not applicable to knot tying, where there is no fixed-length vector of landmarks that
can be extracted from every rope configuration. In contrast, our approach operates
directly on point clouds—the outputs of our sensor hardware—so it is suitable for
this task, and it can be applied to a new task without developing a new vision system.

Rope manipulation and knot tying have been a subject of robotics research for al-
most three decades [11]. Researchers have addressed the problem with motion plan-
ning [12, 13], learning from observation (using knot theoretic representations) [14],

robotic hands with tactile feedback [15], and fixtures that enable robust open-loop
execution [16]. Note that our work is targeted at general manipulation tasks and is
not specialized for the knot tying problem.

3 Generalizing from one example: trajectory transfer

This section describes our method for generalizing from a single demonstrated
trajectory. The problem is follows: at training time, the initial state is STATEtrain,
and the demonstrator provides a trajectory TRAJtrain. At testing time, the robot is
presented with a new state STATEtest and must generate an appropriate trajectory
TRAJtest.

First we’ll review non-rigid registration, which lies at the core of our approach.
Non-rigid registration finds a mapping from a “source” geometry to a “target” geom-
etry. In our application, the source geometry is STATEtrain, and the target geometry
is STATEtest.

3.1 Non-rigid registration

3.1.1 Registration with known correspondences

First let us suppose that the source geometry consists of K landmark points p1,p2, . . . ,pK
and the target geometry consists of K corresponding landmark points p′1,p

′
2, . . . ,p

′
K .

Then the registration problem is to compute a function f : R3→ R3 that maps each
source point to its corresponding target point, which can be quantified as the opti-
mization problem

minimize
f

{
REGULARIZER(f)+∑

k

∥∥f(pk)−p′k
∥∥2

}
. (1)

The regularizer encourages the function to be smooth, at the expense of increasing
the norm of the residuals

∥∥p′k− f(pk)
∥∥.

We’ll use a particular regularizer: the thin plate spline functional,

REGULARIZER(f) =
∫

dx ∑
i∈{x,y,z}

∥∥D2 fi(x)
∥∥2

Frob (2)

where ‖·‖Frob refers to the Frobenius norm, and i indexes over the spatial dimensions
of the range of f. The thin plate spline regularizer (2) encourages f to be globally
smooth and assigns zero cost to affine functions. It has been observed in other fields
(e.g., [17]) that thin plate splines extrapolate well on spatial data; extrapolation is

important for our application. As shown in [18], Equation (1) can be analytically
solved efficiently; details are provided in Appendix 9.1.

3.1.2 Registration without known correspondences

In many problems of interest we are not given corresponding landmarks, rather we
have two unorganized point clouds P = {p1, . . . ,pM} and P′ = {p′1, . . .p′N} and we
want to find a transformation f so that f (P) = {f(p1), . . . , f(pM)} is similar to P′ in
some sense. We use a modification of the TPS-RPM algorithm of Chui and Ragnara-
jan [19], which alternates between the following steps (1) estimate correspondences
between source and target point clouds clouds, and (2) fit a thin plate spline trans-
formation based on these correspondences. Details are provided in Appendix 9.2.

3.2 Trajectory transfer procedure

Our trajectory transfer procedure consists of three steps:
Step 1: Find a transformation f from the training scene to the test scene.

Suppose Ptrain and Ptest are the point clouds of the manipulated object in the train-
ing and test scene, respectively. We perform non-rigid registration as described in
Section 3.1.2 to obtain the transformation f that maps Ptrain onto Ptest.

Step 2: Apply transformation f to the demonstrated end-effector trajec-
tory. Suppose the demonstrated end-effector trajectory is given by a series of poses
T1,T2, . . . ,TT , where each pose Tt consists of a position pt and an orientation Rt .

We transform the positions and orientations as follows, to adapt the trajectory to
the test situation:

pt → f(pt) (3)

Rt → orth
(
Jf(pt)Rt

)
. (4)

Here, Jf(p) is the 3×3 Jacobian matrix of f evaluated at p,

Jf =

∂ fx/∂x ∂ fx/∂y ∂ fx/∂ z
∂ fy/∂x ∂ fy/∂y ∂ fy/∂ z
∂ fz/∂x ∂ fz/∂y ∂ fz/∂ z

 , (5)

and orth(·) is a function that orthonormalizes a 3×3 matrix (e.g. using the SVD).
Equation (3) says that we apply the warping function f to all of the positions. As

for rotations, the natural way to transform a vector v at a point p through a function
f is to multiply it by Jf(p), the Jacobian2. Equation (4) applies this transformation

2 In differential geometry, given a mapping f between two manifolds M and N , the so-called
pushforward maps the tangent space Tp at p ∈M to the tangent space Tf(p) at f(p) ∈N . In terms
of coordinates, it multiplies a vector v ∈ Tp by the Jacobian of the transformation [20].

to the x, y, and z axes of the gripper, and then orthogonalizes the resulting basis so
it corresponds to a gripper pose.

Note that if f happens to be a rigid transformation Tf, then our method simply
left-multiplies each end-effector pose Tt by it

Tt → TfTt . (6)

Step 3: Convert the end-effector trajectory into a joint trajectory. The sim-
plest approach would be to use inverse kinematics. We found that this approach was
not sufficient because there is often no continuous and collision-free trajectory that
achieves the desired end-effector trajectory, so we need to compromise. To enable
the robot to follow the trajectory as closely as possible while satisfying constraints,
we formulate the following optimization problem on the joint trajectory θθθ 1:T :

minimize
θθθ 1,...,θθθ T

[
T−1

∑
t=1
‖θθθ t+1−θθθ t‖2 +µ

T

∑
t=1

∥∥err
(
T̃−1

t · fk(θθθ t)
)∥∥

`1

]
subject to

No collisions, with safety margin dsafe

θθθ min ≤ θθθ 1:T ≤ θθθ max (Joint limits)

Here, T̃t is the desired end-effector pose at time t, fk(·) indicates the robot’s forward
kinematics function applied to θθθ t , and µ is a scalar parameter. err(·) is an error
function that maps a pose in SE(3) to an error vector in R6. In particular, after
decomposing a pose T into translation p and quaternion rotation q, the error vector
is simply given by (px, py, pz,qx,qy,qz).

We solve this problem using the trajectory optimization method from [21]. We
initialize with the joint trajectory from the demonstration, which is in roughly the
right part of configuration space. In our experiments, this initialization strategy led
to finding good locally-optimal trajectories.

We will illustrate the trajectory transfer procedure with a two-dimensional toy ex-
ample, where the task is to draw a two-dimensional curve through four guide-points.
Note that this example merely illustrates the trajectory of positions, not orientations.
The left image of Figure 2 shows the training situation: environment shown in solid
lines, gripper tip trajectory shown as a dotted line, coordinate grid lines shown as
thin solid lines. The right image shows the test situation for which we want to pre-
dict a good gripper trajectory. The registered points are the four corners. First, we
use the method of thin plate splines to find a function that maps the four corners of
the square in the training situation to the four vertices of the new quadrilateral. Then
we apply the nonlinear transformation f to the demonstrated path to obtain a new
path (dotted line), which has the same topological characteristics. The warped grid
lines are shown.

Fig. 2 Illustration of trajectory transfer procedure on a cartoon 2-D example. Left: training situa-
tion. Right: testing situation.

3.3 Some intuition on conditions under which trajectory transfer is
likely to succeed

3.3.1 Cost function invariance

Our trajectory transfer procedure can be justified by an invariance assumption,
which relates it to cost function learning. In inverse optimal control, one learns
a cost function L(STATE,TRAJ) assuming that TRAJ is generated according to
TRAJ = argminTRAJ L(STATE,TRAJ). Probability density function estimation is
closely related—here, L is the negative log-likelihood. Our trajectory transfer pro-
cedure can be justified by assuming that there is a class of smooth transformations f
with the following property:

L(STATE,TRAJ) = L(f(STATE), f(TRAJ)) (7)

Here, f(TRAJ) means transforming the trajectory as described in Section 3.2.
Given that the demonstration trajectory has low cost, and f transforms STATEtrain

into STATEtest, it follows that trajectory transfer produces a low-cost trajectory:

L(STATEtest, f(TRAJtrain))≈ L(f(STATEtrain), f(TRAJtrain))

= L(STATEtrain,TRAJtrain). (8)

Equation (7) is a strong assumption and defines L on a large part of the state space
using a single (STATE,TRAJ) pair. That said, one can imagine situations where
Equation (7) does not hold, even for a rigid transformation f—for example, when
absolute orientation of the robot’s end-effector matters.

3.3.2 Dynamics invariance

An alternative perspective is that trajectory transfer works in scenarios where the
dynamics of the system are approximately invariant—more properly, covariant—
under sufficiently smooth coordinate transformations. Suppose that the effect of ap-
plying the trajectory TRAJ is given by the propagator ΠTRAJ, so that

ΠTRAJ(STATEt) = STATEt+1 (9)

The dynamics are defined to be covariant under the transformation f if and only if

f(ΠTRAJ(STATEt)) = Πf(TRAJ)(f (STATEt)) (10)

which is illustrated by the following commutative diagram

{STATEt
train}

ΠTRAJ−−−−→
{

STATEt+1
train

}
f
y yf

{STATEt
test}

Πf(TRAJ)−−−−→
{

STATEt+1
test
} (11)

Let G denote a goal set, i.e., a set of desirable final states. Suppose that the as-
sumptions hold:

1. f(STATEt
train) = STATEt

test, i.e., f transforms STATEtrain into STATEtest.
2. STATEt+1

train ∈ G, i.e., the demonstration ends up in the goal state.
3. f(G) = G, i.e., the goal set is preserved by f
4. Equation (10) holds, i.e., the dynamics are covariant under f.

Then by applying the trajectory f(TRAJ) to STATEt
test, we obtain f(STATEt+1

train) ∈ G,
i.e., the final state is in the goal set.

In the knot tying domain, the goal set is defined topologically, and a transfor-
mation f will preserve it, provided that it is a homeomorphism (i.e., a continuous
function whose inverse is continuous), justifying assumption 3. Assumption 4 holds
approximately in this domain; we have checked this qualitatively by comparing the
final states of the rope at training and test time.

4 Generalizing from many examples: nearest neighbor method

Intuitively, if STATEtrain is very close to STATEtest, then trajectory transfer is likely to
work. Given a collection of demonstrations, with initial states STATE1,STATE2, . . . ,STATEK ,
we can select the one that is closest to STATEtest, and use that one for trajectory
transfer:

STATEi∗ = arg min
i∈1,2,...,K

DISTANCE(STATEi,STATEtest). (12)

One crucial question is how to measure distance. One natural distance measure of
geometric similarity is the bidirectional fitting cost used in our registration proce-
dure.

REGULARIZER(f)+∑
k

∥∥f(pk)−p′k
∥∥2

+REGULARIZER(g)+∑
k

∥∥g(p′k)−pk
∥∥2

We found that this distance function agreed very well with our intuition about which
states are closer and appropriate for trajectory transfer.

We can use this distance function to define a simple policy for completing multi-
step tasks. The policy loops through the following steps until task completion:

1. Acquire a new observation STATEtest.
2. Choose the nearest demonstration using the registration cost, as in Equation (12).
3. Apply trajectory transfer to obtain a new trajectory TRAJtest.
4. Execute TRAJtest on the robot.

This policy enables the robot to recover from errors, provided that the demonstrator
has provided a demonstration starting from the failure state.

5 Experiments with rope

Fig. 3 Robot executing knot ties. Top row to bottom row: figure-eight knot, double-overhand knot,
square knot, and clove hitch. Figure 1 already illustrated the overhand knot.

We enabled the PR2 to autonomously tie five different types of knot: overhand,
figure-eight, double-overhand, square knot, and clove hitch (around a pole). The

latter four knots are shown at several stages of execution in Figure 3. Videos are
available at http://rll.berkeley.edu/isrr2013lfd.

Teaching was performed kinesthetically, by guiding the robot’s arms through the
motion with its controllers off. The demonstrator noted look, start, and stop times,
which indicated when to acquire a point cloud for the initial configuration and when
the motion begins and ends. Point clouds were acquired from an RGBD camera
mounted on the PR2 head. We extracted the rope points using color filtering (the
rope was red or white, and the tablecloth was green).

We first performed an exploratory experiment with one demonstration per knot
tie, where we measured how robust the procedure was under perturbations of the
rope state of the demonstrations. We randomly perturbed the rope as follows. First
the rope was laid out in the initial configuration from the demonstration, Then each
of five points, uniformly spaced along the length of the rope, was manually dragged
by a distance dpert in a random direction. Then, we executed the knot-tying proce-
dure and judged its success in tying the knot.

We performed five trials for each type of knot. The rates of success of these
knot ties are shown in Table 1. As expected, the failure rate increases at higher
dpert, where the test situation is further away from the training situation. Two of
the common failure modes were (1) the rope would end up in a previously unseen
crossing state, often due to a small difference in its position; (2) the robot would
grab the wrong piece of rope, or two pieces instead of one.

Knot type Segments Success (dpert = 3cm) (dpert = 10cm)
Overhand 3 5/5 4/5

Figure-eight 4 5/5 1/5
Dbl-overhand 5 3/5 3/5

Square 6 5/5 3/5
Clove hitch 4 1/5 0/5

Table 1 Results for generalizing from a single demonstration: knot-tie success vs. size of random
perturbations.

The above results suggest that when starting from a state that is very close to a
demonstration, the success rate is high, at least for the easier knots. We hypothesized
that if we collected enough demonstrations, every rope state of interested would
be near some demonstration’s initial state, so we would achieve that high level of
performance over the entire state space by doing nearest neighbor lookups.

To test this hypothesis and explore how our algorithm performs in the many-
demonstrations regime, we collected a large number of demonstrations of the over-
hand knot. The dataset contains a total of 148 trajectory segments, which include
36 demonstrations of the standard 3-step sequence and 40 additional segments start-
ing from failure states—states that prevent the standard knot tying procedure from
proceeding and require corrective actions.

Our initial (qualitative) results are promising: we find that the nearest-neighbor
policy from Section 4 is able to successfully tie knots from a much larger set of ini-
tial configurations than was possible with a single demonstration, and it is also able

http://rll.berkeley.edu/isrr2013lfd

to choose corrective movements to recover from the failure states. Two executions
are shown in Figure 4.

Stage 3Stage 2Stage 1

Stage 1 Stage 2 Stage 3
Need to grab here,

but not enough room

Corrective move

Thursday, July 11, 13

Fig. 4 Two successful executions of an overhand knot, based on our dataset of 148 demonstration
segments. The top row shows the usual three-stage procedure. The bottom row shows a situation
where an extra step was needed. After stage two, the rope ended up in a difficult state—the end
that it needs to grab was too short. However, the nearest neighbor lookup found a demonstration
with a very similar starting state and a corrective movement, which (after trajectory transfer) made
the end graspable.

6 Experiments on other manipulation tasks

We performed some other experiments to validate that the proposed method can be
applied to manipulation tasks other than knot tying. The three tasks considered were
folding a T-shirt, picking up a plate using a non-trivial two-arm motion, and opening
up a bottle. The former task was executed using three segments, whereas the latter
two consisted of one open-loop trajectory segment. We performed these tasks with
the same algorithm and code that was used for the knot tying. See Figure 5.

7 Conclusion

We have presented a method for adapting trajectories to new situations, based on
non-rigid registration between the geometry of the training scene and the testing
scene. This enables us to successfully perform a task under various initial conditions

Tuesday, July 9, 13

Fig. 5 Top row, left image: recording demonstration on a large T-shirt. Top row, right images:
executing shirt folding procedure autonomously on small T-shirt, based on single demonstration
on large T-shirt. Bottom row, left: demonstration and autonomous execution of plate pickup. Round
plate from training was registered to rectangular plate at test time. Bottom row, right: demonstration
and autonomous execution of bottle opening. The bottle used at test time had a different size and
shape from the one used for training.

based on a single demonstration. Our method is justified by invariance assumptions
as discussed in Section 3.3.

The non-rigid registration metric can also be used to find the nearest demon-
stration, when multiple demonstrations have been provided. This simple scheme
enables our algorithm to successfully perform challenging multi-step manipulation
tasks.

8 Source code

Complete source code and tutorials for our software are available at http://rll.
berkeley.edu/rapprentice. Other supplementary material for this paper is
available at http://rll.berkeley.edu/isrr2013lfd.

9 Acknowledgements

This research has been funded in part by the Intel Science and Technology Cen-
ter on Embedded Computing, by an AFOSR YIP grant, by a Sloan Fellowship,
by a SURF Rose Hills Fellowship, and by NSF under award 1227536. We thank
Sachin Patil and Ken Goldberg for their inspiring ideas and valuable advice. We
thank Henry Lu and Robbie Gleichman for substantial contributions to the experi-
ments. We would like to acknowledge the following open-source software that we
used: OpenRAVE [22], ROS [23], PCL [24], OpenCV [25].

http://rll.berkeley.edu/rapprentice
http://rll.berkeley.edu/rapprentice
http://rll.berkeley.edu/isrr2013lfd

References

1. J. V. Hajnal and D. L. Hill, Medical image registration. CRC press, 2010.
2. M. Pauly, N. J. Mitra, J. Giesen, M. H. Gross, and L. J. Guibas, “Example-based 3D scan

completion.,” in Symposium on Geometry Processing, pp. 23–32, 2005.
3. S. Belongie, J. Malik, and J. Puzicha, “Shape matching and object recognition using shape

contexts,” Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 24, no. 4,
pp. 509–522, 2002.

4. A. A. Efros and W. T. Freeman, “Image quilting for texture synthesis and transfer,” in Pro-
ceedings of the 28th annual conference on Computer graphics and interactive techniques,
pp. 341–346, ACM, 2001.

5. T. Malisiewicz, A. Gupta, and A. A. Efros, “Ensemble of exemplar-svms for object detection
and beyond,” in Computer Vision (ICCV), 2011 IEEE International Conference on, pp. 89–96,
IEEE, 2011.

6. C. Liu, J. Yuen, and A. Torralba, “Nonparametric scene parsing: Label transfer via dense scene
alignment,” in Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference
on, pp. 1972–1979, IEEE, 2009.

7. S. Calinon, “Robot programming by demonstration,” in Springer Handbook of Robotics,
pp. 1371–1394, Springer, 2008.

8. S. Calinon, F. Guenter, and A. Billard, “On learning, representing, and generalizing a task in
a humanoid robot,” Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions
on, vol. 37, no. 2, pp. 286–298, 2007.

9. S. Calinon, F. D’halluin, D. Caldwell, and A. Billard, “Handling of multiple constraints and
motion alternatives in a robot programming by demonstration framework,” in Humanoid
Robots, 2009. Humanoids 2009. 9th IEEE-RAS International Conference on, pp. 582–588,
Ieee, 2009.

10. G. Ye and R. Alterovitz, “Demonstration-guided motion planning,” in International Sympo-
sium on Robotics Research, 2011.

11. H. Inoue and M. Inaba, “Hand-eye coordination in rope handling,” in Robotics Research: The
First International Symposium, vol. 1, pp. 163–174, 1985.

12. H. Wakamatsu, E. Arai, and S. Hirai, “Knotting/unknotting manipulation of deformable linear
objects,” The International Journal of Robotics Research, vol. 25, no. 4, pp. 371–395, 2006.

13. M. Saha, P. Isto, and J. Latombe, “Motion planning for robotic manipulation of deformable
linear objects,” in Int. Symp. On Experimental Robotics (ISER), 2006.

14. T. Morita, J. Takamatsu, K. Ogawara, H. Kimura, and K. Ikeuchi, “Knot planning from obser-
vation,” in Robotics and Automation, 2003. Proceedings. ICRA’03. IEEE International Con-
ference on, vol. 3, pp. 3887–3892, IEEE, 2003.

15. Y. Yamakawa, Y. Namiki, M. Ishikawa, and M. Shimojo, “One-handed knotting of a flexible
rope with a high-speed multifingered hand having tactile sensors,” in Intelligent Robots and
Systems, 2007. IROS 2007. IEEE/RSJ International Conference on, pp. 703–708, IEEE, 2007.

16. M. Bell, Flexible object manipulation. PhD thesis, Dartmouth College, Hanover, New Hamp-
shire, 2010.

17. J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C. McCallum, and
T. R. Evans, “Reconstruction and representation of 3D objects with radial basis functions,” in
Proceedings of the 28th annual conference on Computer graphics and interactive techniques,
pp. 67–76, ACM, 2001.

18. G. Wahba, Spline models for observational data, vol. 59. Society for Industrial Mathematics,
1990.

19. H. Chui and A. Rangarajan, “A new point matching algorithm for non-rigid registration,”
Computer Vision and Image Understanding, vol. 89, no. 2, pp. 114–141, 2003.

20. R. Abraham, J. Marsden, T. Ratiu, and R. Cushman, Foundations of mechanics. Benjam-
in/Cummings Publishing Company, 1978.

21. J. Schulman, J. Ho, A. Lee, I. Awwal, H. Bradlow, and P. Abbeel, “Finding locally optimal,
collision-free trajectories with sequential convex optimization,” in Proc. Robotics: Science
and Systems, 2013.

22. R. Diankov and J. Kuffner, “Openrave: A planning architecture for autonomous robotics,”
Robotics Institute, Pittsburgh, PA, Tech. Rep. CMU-RI-TR-08-34, p. 79, 2008.

23. M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y. Ng, “Ros:
an open-source robot operating system,” in ICRA workshop on open source software, vol. 3,
2009.

24. R. B. Rusu and S. Cousins, “3D is here: Point cloud library (PCL),” in Robotics and Automa-
tion (ICRA), 2011 IEEE International Conference on, pp. 1–4, IEEE, 2011.

25. G. Bradski, “The OpenCV library,” Dr. Dobb’s Journal of Software Tools, 2000.

Appendix

This appendix describes our registration procedure, which is based of the TPS-RPM
algorithm of Chui and Ragnarajan [19].

9.1 Thin plate splines

The classic method of smoothed thin plate splines [18] minimizes the following cost
functional on f : Rd → R:

J(f) = ∑
i
(yi− f (xi))

2 +λ ‖ f‖2
tps (13)

Here, ‖ f‖tps is a measure of curvature or distortion, and is defined as

‖ f‖2
tps =

∫
dx
∥∥D2 f (x)

∥∥2
Frob (14)

where D2 f is the matrix of second partial derivatives of f , and ‖·‖2
Frob indicates its

Frobenius norm, i.e., the sum of squares of its entries. λ is a parameter that controls
the tradeoff between smoothness and goodness-of-fit.

Remarkably, the minimizer to the functional in Equation (13) is a finite-dimensional
expansion in terms of basis functions, centered around the data points xi, plus an
affine part:

f (x) = ∑
i

aiK(xi,x)+bT x+ c (15)

where K is the kernel function, and in 3D, K(r) =−r (after dropping the irrelevant
constant factor.)

In non-rigid registration, one needs to solve for a function f : R3 → R3, rather
than a scalar-valued function. We can build a vector-valued function f by combining
three scalar-valued components of the form (15), i.e., f(x) = (f0(x), f1(x), f2(x))T .
Thus f has the form

f(x) = ∑
i

aiK(xi,x)+Bx+ c (16)

for ai ∈R3, B ∈R3×3, c ∈R3. Adding an additional regularization term r(B) on the
linear part of the transformation, we obtain the following optimization problem

min
A,B,c

∥∥Y−KA−XB−1cT∥∥2
Frob + trace(AT KA)+ r(B)

subject to XT A = 03×3 and 1T A = 01×3 (17)

where X =
(
x1 x2 · · ·

)T , Y =
(
y1 y2 · · ·

)T , and A =
(
a1 a2 · · ·

)T . For certain
choices of r(B) This problem completely decouples the three components of f, i.e.,
we are separately fitting three functions for the separate output dimensions.

We found that the regularization r(B) was necessary because sometimes the
transformation is underdetermined in certain dimensions. For our experiments, we
used r(B) = trace

(
(B− I)T D(B− I)

)
, where D is a diagonal matrix. With this

quadratic regularization term, the optimization problem still can be solved analyti-
cally as a least squares problem.

9.2 Iterative Registration Algorithm

This section considers the problem raised in Section 3.1.2 of registering two point
clouds where we are not given correspondences between their points. We use a mod-
ification of the TPS-RPM algorithm of Chui and Ragnarajan [19], where the main
modification is to jointly fit a forward transformation f and inverse transformation g.
The algorithm iterates between two steps: soft assignment between the points, and
fitting the pair of thin plate spline transformations f,g. First, let us assume that we
have N source points x1, . . . ,xN and M target points y1, . . . ,yM .

The full optimization problem that we solve is the following

minimize
f,g

N

∑
n=1

M

∑
m=1

Cnm

(
‖f(xn)−ym‖2 +‖g(ym)−xn‖2

)
+

REGULARIZER(f)+REGULARIZER(g) (18)

such that C ∈ RN×M is is the unique solution to the following constraints:

Cnm = sntm exp
(
−(‖ym− f(xn)‖2 +‖xn−g(ym)‖2))/2σ

2
)
,

n = 1, . . . ,N, m = 1, . . . ,M
M

∑
m=1

Cnm = 1, n = 1, . . . ,N (19)

N

∑
n=1

Cnm = N/M m = 1, . . . ,M (20)

where s∈RN
+ and t∈RM

+ are scaling factors (uniquely determined by constraints (19)
and (20)), and σ is a parameter that controls the correspondence difference, which
will by systematically varied in the optimization procedure below.

Alternating optimization procedure. Following the Chui and Ragnarajan [19],
we alternate between fitting (solving for f,g) and soft assignment (solving for C).
Meanwhile, we are exponentially decreasing two parameters: a scale parameter σ

that controls the correspondence distance, and the regularization parameter λ for
the thin plate spline fitting. These parameters will be decreased exponentially in
the series σ1,σ2, . . . ,σNUMITERATIONS and λ1,λ2, . . . ,λNUMITERATIONS. The algorithm
is given below:

Initialize f,g to the identity
For i = 1 to NUMITERATIONS

Compute correspondence matrix C
(using X,Y, f,g,σi)
Fit forward and inverse transformations f,g
(using X,Y,C,λi)

	Learning from Demonstrations Through the Use of Non-Rigid Registration
	John Schulman and Jonathan Ho and Cameron Lee and Pieter Abbeel
	Introduction
	Related work
	Generalizing from one example: trajectory transfer
	Non-rigid registration
	Trajectory transfer procedure
	Some intuition on conditions under which trajectory transfer is likely to succeed

	Generalizing from many examples: nearest neighbor method
	Experiments with rope
	Experiments on other manipulation tasks
	Conclusion
	Source code
	Acknowledgements
	References
	Appendix
	Thin plate splines
	Iterative Registration Algorithm

